Oregon Health Sciences University (OHSU) and Portland State University (PSU) School of Public Health

Skip to Main Content

Course Directory and Schedules

Year-long Planning Schedule

Course Descriptions

Courses by Program

Bayesian Methods for Data Analysis – BSTA 521

Course Code Credit Terms Offered Instructors Course Delivery

BSTA 521

3

Course Information

The methods students learned in the biostatistical applied and theoretical sequences were based on the “frequentist” method of statistical reasoning, where probability is understood to be the long-run frequency of a ‘repeatable’ event, and statistics that are computed are based on a specific study only. Bayesian methods are based on a different philosophy – that probability of an event is based on ALL information known at the time. Bayesian methods for data analysis enable one to combine information from previous similar and independent studies (prior information), with information from a new study, yielding updated inference for model parameters. This course will cover the concept of Bayesian analysis, posterior distribution, Bayesian inference and prediction, prior determination, one parameter and two parameter models, Bayesian hierarchical models, Bayesian computation, model criticism and selection as well as basic comparison of Bayesian and Frequentist Inferences. Real life examples in medical and health science will be used to explain the concept and application of Bayesian models.

 

Prerequisites

BSTA 511/611 Estimation and Hypothesis Testing for Applied Biostatistics (passing grade of "B" or better); BSTA 512/612 Linear Models; and BSTA 550 Introduction to Probability (passing grade of "B" or better).